无 He 橫流连续 CO₂ 激光等离子体化学反应 对输出稳定性的影响

薛 静* 袁 好 唐宗化 龚志伟 丘军林 (华中理工大学激光研究所,武汉)

Influence of plasma chemical reactions on output stability of helium-free TF CW CO₂ lasers

Xue Jing, Yuan Yu, Tang Zonghua, Gong Zhiwei, Qiu Junlin (Laser Institute, Huazhong University of Science & Technology, Wuhan)

提要:本文研究了等离子体化学反应对无 He 横流连续 CO2 激光器输出稳定性的影响,测定了 各种工作气体及其各种条件下的 CO2 分解,对加 He 和加 Ar 时输出稳定性不同的原因进行了分析, 并对杂质气体的影响进行了研究。

关键词: 无 He 横流 CO2 激光器

一、引言

影响 CO₂ 激光器功率输出稳定性的因 素很 多, 其中工作物质 CO₂ 的分解和放电参量(放电电流、阻 抗)的变化是主要原因,它涉及激光放电时等离子体 的化学反应过程。

迄今为止,国内外有关 CO₂ 激光器受等离子体 化学反应影响的研究,均针对有 He 情况。实验表 明,加 He 和加 Ar 时,激光器的输出稳定性有较大 差异。我们在 MGL-84 型无 He 横流连续 CO₂ 激光 器上,对使用 CO₂-N₂ CO₂-N₂-He(Ar)几种混合气 体及其不同配比时的 CO₂ 的分解进行了检测分析, 同时还进行了含有一定量杂质气体的运行实验,以 研究等离子体化学反应对输出功率、电光效率和放 电的影响。

二、实验装置与实验结果

采用 103 型气相层析仪检测 激光器的 气体成 分。实验时,用高纯氢作载气, \$\phi 4 mm \times 1000 mm \times 2 两不锈钢柱串联作层析柱,担体采用 GDX-105 型高 分子小球和 5A 分子筛。每次进样 60 \mul, 仪器最小 检测量 1.0%,实验结果相对误差为 1.0 \circ 5.0%。

在 MGL-84 型激光器上,我们对 CO₂-N₂、CO₂-N₂-He (Ar) 三种混合气体的 CO₂ 分解进行了检测,

结果列于表 1,其中[]表示气体 μ 的浓度,f表示 CO₂的分解度,定义为 $f_{\overline{\Box}}$ [CO]/{[CO]+[CO₂]}× 100%。采样条件也分别列于表中,这时的 CO₂分解 已趋于平衡,变化很小。

表 1

检测量	气体组分及状况					
	CO ₂ -N ₂ -He 1-7-20 90 Torr 920 W 连续运 行 100 分钟	CO ₂ -N ₂ 1-9 45 Torr 900 W 连续运 行 120 分钟	CO ₂ -N ₂ -Ar 1.5-10-10 62 Torr 920 W 连续运 行 150 分钟			
初始[CO ₂]。 (%)	3.57	10.00	6.98			
[CO] (%)	0.67	1.75	0.72			
分解度f (%)	18.80	17.53	10.32			

图1和图2分别是CO₂分解度f随放电时间t 和输出功率P₀的变化曲线。

可以看到,三种混合气体中 CO2 的分解度为:

 $f_{\rm CO_2-N_2-H_0} \simeq f_{\rm CO_2-N_2} > f_{\rm CO_2-N_2-Ar}$

CO2分解对输出有显著影响,这已从实验得到证实。 如果采用 CO2-N2-He 混合气体,功率随放电时间单

* 现在武汉华中师范大学物理系工作。

图3 输出功率 Po 的时变曲线

调下降(见图 3),输出稳定性较 CO₂−N₂−Ar 或 CO₂−N₂ 低得多,为维持一定的输出功率,必须每隔一定时间升高一次放电电压。表 1 中 CO₂−N₂−He 的分解几乎是 CO₂−N₂−Ar 的两倍,可见 CO₂−N₂−He 较 CO₂−N₂−Ar 输出稳定性差。

由 CO₂ 的电子碰撞分解反应,可推出分解度 f 的解析式

(1)

$$e + CO_2 \xrightarrow{\kappa} CO + O + e$$

1. 腔内气体达到 CO2 分解平衡时,分解度和放 电区内的分解度相同。

2. 存在一特征时间 to, 使得放电区内

t≤to时,分解速率为常数k

t>to时,分解达到平衡,净分解为零,k=0,由 此得:

$$\frac{d}{dt} [CO_2] = \begin{cases} -kn_e [CO_2] & t \leq t_0 \\ 0 & t > t_0 \end{cases}$$
(2)

其中, ^k 为反应速率常数, ⁿ。为电子密度。设初始 CO₂ 浓度为 [CO₂]。求解(2)、(3),并代入 f=[CO]/ {[CO]+[CO₂]}×100%, [CO]+[CO₂]=[CO₂]₀, 可得到:

$$f = \begin{cases} 1 - e^{-kn_e t} & t \leq t_0 \end{cases} \tag{4}$$

$$f_0$$
(常数) $t > t_0$ (5)

以 $k=1 \times 10^{-9}$ cm³·s⁻¹, $n_e=5 \times 10^5$ cm⁻³·s^[5] 代入,可求出放电区内 CO₂ 达到分解平衡的特征时间 to 为 ms 量级。电子密度增高,分解度 f 也将随之升高。

实验没能观察到 CO2-N2 的 CO2 分解随输出功 率的明显变化, CO2-N2 从开始放电到放电参量稳定 的时间非常短, 一般小于十分钟, 而 CO2-N2-He(Ar) 达到基本稳定至少需要半小时。

表2是不同气压以及不同气比 CO₂:N₂ 的检测 结果。

表 2

月山	- 於河昌	气 压					
	THE CAN YET	45 Torr	52 Torr	55 Torr			
$CO_2:N_2$	[CO] (%)	2.09	2.05	1.98			
1:8	f (%)	18.84	18.44	17.81			
$CO_2:N_2$	[CO] (%)	1.75					
1:9	f (%)	17.53					

CO₂的分解是一个体积增加反应,由化学平衡移动原理可知,增加混合气体压力以及减少 CO₂比例,平衡时的 CO₂分解度将会降低。

三、CO₂分解机制的分析

CO₂分解主要是由电子碰撞引起, 基态 CO₂ 的 分解能为 5.5eV^{III}。连续 CO₂ 激光器的电子平均能 量一般在 1.0~2.0eV 之间^[2], 远小于分解能。可见 使 CO₂ 发生分解的电子必定是处在电子能量分布尾 部的高能电子。

He 在 CO₂-N₂-He 混合气体中电离电位较高, 故对低能电子分布影响不大,但对高能电子分布有 影响。混合气体加入 He 以后,电子温度 T_e升高,这 表明加 He 使得电子与气体粒子碰撞电离的几率下 降,高能电子比例增加。而 CO₂-N₂-Ar 混合气体中,

假设

由于 Ar 电离电位较低,放电中将大量参加电离,故 加 Ar 并不显著增加高能电子数,仅对低能电子分 布有影响。

氫的亚稳态 Ar^m(⁸P₀, ⁸P₂)与 CO₂ 发生碰 撞分 解的速率也很高。

$$\operatorname{Ar}^{m}({}^{3}P_{0}, {}^{3}P_{2}) + \operatorname{CO}_{2} \xrightarrow{k} \operatorname{Ar} + \operatorname{CO} + \operatorname{O} + \Delta E$$
(6)

速率系数 $k=5.3\times10^{-10}$ cm³·s⁻¹^[6],可是由于 Ar^m (³P₀, ³P₂)的总破坏速率 C_{a} 很高(>10⁻⁷ cm³·s⁻¹), 故碰撞特征时间[$k_{Arm} \cdot v_{Arm}$]⁻¹较[$k_{n_{o}} \cdot n_{o}$]⁻¹小得 多, CO₂-N₂-Ar 中仍以电子碰撞分解为主。

 CO_2-N_2 中不含 He 和 Ar, 且 N₂比例较高 ($CO_2:N_2=1:8$),故情况有所不同。混合气体 CO₂-N₂、CO₂-He, N₂-He, CO₂-N₂-He中, CO₂-N₂的电 离系数(α_i /P)最低,且 N₂比例增加时, α_i /P 单调下 降。因此 CO₂-N₂较 CO₂-N₂-He 难电离,并导致较 高的高能电子含量。与 CO₂-N₂-Ar 相比, Ar 的电 离电位虽然较 N₂略高(Ar 15.76 eV, N₂15.58 eV), 但 Ar 的亚稳激发能级只有 11.6 eV,且亚稳 Ar^m可 以经下列反应电离

$$Ar^{m} + Ar^{m} \longrightarrow e + Ar^{+} + Ar$$
 (7)

$$e + \operatorname{Ar}^{m} \longrightarrow e + e + \operatorname{Ar}^{+}$$
 (8)

反应速率为(10⁻⁷~10⁻⁶)cm³·s⁻¹^[2],因此 CO₂-N₂中的高能电子较 CO₂-N₂-Ar 多,与 CO₂-N₂-He 相当。 它们的 CO₂ 分解度之间的关系为

$f_{\rm CO_2-N_2-H_0} \simeq f_{\rm CO_2-N_2} > f_{\rm CO_2-N_2-Aro}$

加大输出功率时,放电电流(电子密度)也增加, 高能电子数也随之增加,故 CO₂ 分解有一定上升;提 高工作气压,则平均自由程 λe 减小,高能电子的比 例将下降,故 CO₂ 分解下降。

减少高能电子数的有效方法是加入低电离电位 的物质。例如,三正丙胺、三正丁胺以及二甲苯等^[3,4]。

四、等离子体化学反应的影响

本文重点讨论杂质气体的放电产物对无 He 连 续 CO₂ 激光器的增益、效率、输出功率和稳定性的影 响。

4.1 CO的影响

有 He 运行时,由 CO₂ 分解引起的输出功率下降很严重(见图 3),为维持输出稳定,需加入相当数量的 CO,同时,CO 有益于抑制由负离子引起的放电附着不稳定。

然而实验发现,以Ar代田e运行时,加入CO并 未显示优越性。CO含量高于2.0%以后,电光效率 反略有下降(见表3和图4),原因之一是因为能量 小于1eV的电子对 CO的振动激发截面很大,大量 加入 CO 降低了 CO₂(00°1)的激发效率。以Ar代 田e运行, CO₂分解大为下降,故 CO 主要是影响放 电阻抗,而对输出稳定性无显著改善。

102	
	- 22

加入 气体 %	气压	放电电压	第一 排针 电流	第二 排针 电流	第三 排针 电流	输出 功率 Po(W)	效率%
O ₂ —	76 mbar	3400 V	0.79 A	1.21 A	1.17 A	949	11.79
O ₂ 1.3	76 mbar	3400 V	0.67 A	1.04A	1.00A	907	12.50
	60	1	1		1		
co —	Torr	3200 ∇	0.85 A	1.28 A	1.21A	1087	14.10
CO 2.5	60 Torr	3200 V	0.99A	1.50A	1.46 A	1072	12.75

图4 CO₂-N₂-Ar 加入 CO 前后的 η-Po 曲线

4.2 O₂的影响

O₂ 仅对放电有影响,并由此影响激光器的输出 及稳定性。实验发现,加入 O₂ 后放电阻抗显著升高, 电流下降。若维持放电电压不变,可发现输出功率 因注入功率的减少而下降。同时,加入 O₂ 使得负离 子浓度升高,放电稳定性下降,输出涨落加大(图 5)。 并且当 O₂ 含量达到 1.5% 时(62 Torr 中,等效空气 分压 4.5 Torr),放电极易起弧。实验还发现,加入 O₂ 后,使电光效率提高了 1.0% 左右(见表 3)。

4.3 H₂0的影响

我们用 3A 分子筛制成干燥塔,让气体流经干燥塔脱水后再充入激光器内,3A 分子筛可使气体含水量降至 ppm 量级。这时起弧注入功率提高 1kW 以上,从7.5kW 提高到 8.7kW 左右。

日₂O 对 CO₂ 激光能级的碰撞弛豫 速率影响很 大,并导致放电热不稳定。假定 H₂O 对 CO₂(00^o ν_3)的振动弛豫常数 $k=4\times10^{-13}$ cm³·s⁻¹^[5],实验室内 T=300 K,相对湿度 0.8~0.9 时,空气中水重量比 达到 2.0% 左右,这时可算出 60 Torr 工作气体漏入 5 mbar 湿空气,即可使振动弛豫时间 τ 和气体在放 电区滞留时间相当。激光器只能维持 600~700 W 输 出,效率很低,注入再大则起弧。

4.4 氮氧化合物(NO_a)的影响

氮氧化合物是 N₂ 及其分解产物 N 与 CO₂ 分解 产物 O 的二次产物。 N₂O 对 CO₂ (00°1) 有猝灭作 用,因为 N₂O 与 N₂($X\Sigma_{v}^{*}v=1$) 之间的反应是谐振 的⁽³⁾。 N₂O 积累到一定含量,激光器增益将下降。

NO2的电子亲合势非常大(见表 4), 易生成负 离子 NO2,使得放电阻抗上升,注入功率减少,且使 放电不稳定。

表 4 原子和分子的电子亲合势

种类	NO	N_2O	O ₂	CO_4	0	ОН	O ₃	CO3	NO ₂	NO3
电子亲 合势 (eV)	0.03	0.26	0.50	1.22	1.46	1.83	2.05	2.82	3.10	3.7

NO的电离电位很低(9.27eV),少量NO将使 放电易于起辉,且微量的NO可提高电光效率^[6],因 为NO一定程度上提高了电子密度n_e。但NO含量

(b)电光效率 n(电流 I)的时变曲线;

升高时,将转化为 N₂O、NO₂ 又影响了激光器的放电和增益。

实验中发现,激光器效率在最初运行数小时是 缓慢上升的(见图 6)。这可认为是 NO、N₂O、NO₂ 同 时作用的结果(CO、H₂O 的影响已排除), NO₂ 平衡 时其影响方停止。

参考文献

- 1 R. G. Buser et al., J. Appl. Phys., 41(7), 472~479 (1970)
- 2 G. 贝克菲等著,"激光等离子体原理"(上海科技出版 社,1981)
- 3 C. H. Brito, J. Appl. Phys., 52(2), 612~613 (1981)
- 4 V. V. Apollonov et al., Sov. J. Quant. Electr., 15 (1), 1~3(1985)
- 5 "激光"(大能量 CO2 激光器专辑),第六集,科技文献出版社重庆分社
- 6 A. L. S. Smith, IEEE J. Quant. Electr., QE-11 (7), 335~340 (1975)

(收稿日期: 1987年8月19日)